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Amitabha Tripathi

Counting problems are at the core of the field of study that we call
“Combinatorics”. Basic principles and techniques of Combinatorics familiar to
any undergraduate student, and often to an advanced high school student, include
basic laws of sum and product, counting distributions, permutations and combi-
nations, the principle of Induction, and the principle of Inclusion & Exclusion. A
useful method often employed to count the number of objects in a set is to place
the set in one-to-one correspondence with another set whose size is more easily
determined. The problem of counting the number of compositions of a positive
integer is standard, and can be found in some form in several books that deal with
basic combinatorial methods. We illuminate this problem by touching upon many
different basic counting methods that may be employed to solve this problem.

Let n and k be positive integers. A composition of n into k (positive) parts
is an ordered k-tuple (x1, . . . , xk) with each xi ∈ N and x1 + · · · + xk = n. The
xi’s are the parts of the composition. Thus (1, 2, 2, 3) is a composition of 8 into
4 parts. If we denote by p?k(n) the number of compositions of n into k parts, it is
a standard result in combinatorics that

p?k(n) =
���n(x1, . . . , xk) : x1 + · · ·+ xk = n, xi ≥ 1

o��� =

�
n− 1

k − 1

�
. (1)

It is worth recalling an ingenious method to solve this (and other similar) problems.
Place n dashes on a line, with adjacent dashes separated by blank spaces. Note
that there are n−1 blank spaces. Choose k−1 of these n−1 blank spaces and fill
them with k − 1 bars; this can be done in

�n−1
k−1
�

ways. Each of these ways breaks
the n dashes into k nonempty batches, thus providing a (unique) composition of
n into k parts. To see this, the figure below illustrates the example of (1, 2, 2, 3)
as a composition of 8 into 4 parts by placing bars into spaces 1, 3, and 5.

−→1 2 3 4 5 6 7

Figure 2: (1, 2, 2, 3) as a composition of 8 into 4 parts

The selection of k− 1 of the n− 1 blank spaces to be filled with bars is associated
in a one-to-one manner with the composition of n into k parts. Thus there are�n−1
k−1
�

compositions of n into k parts.

A composition of n is a composition of n into k parts, with no restriction
on the number of parts. We list below the number of compositions of n.

n 1 2 3 4 5 6 7 8 9 10
p?(n) 1 2 4 8 16 32 64 128 256 512
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The pattern is unmistakeable, and suggests a simple combinatorial explanation.
Indeed, if p?(n) denotes the number of compositions of n, then

p?(n) =
X
k≥1

p?k(n) =
nX
k=1

�
n− 1

k − 1

�
=
n−1X
k=0

�
n− 1

k

�
= 2n−1. (2)

The method of placing bars between dashes to obtain a formula for p?k(n) can be
easily adapted to also obtain the result in (2). In fact, since we have no restriction
on the number of bars to place between the dashes, there are exactly 2 choices
(whether or not to place a bar) between each pair of adjacent dashes. Each of these
choices can again be associated in a one-to-one manner with the compositions of
n, leading to 2n−1 compositions of n.

The simplicity of formula (2) for p?(n) leads us to believe that there may
be other ways to obtain this result by using other basic combinatorial methods.
Underlying this is the understanding that any two finite sets of the same size must
be in one-to-one correspondence, and it is this correspondence that we seek.

Induction. One of the first thoughts that cross our minds when we need to prove
a formula that applies to the set of positive integers is to apply the method of
mathematical induction. Note that p?(1) = 20 = 1. Assume that p?(m) = 2m−1

for 1 ≤ m ≤ n − 1. Each composition of n begins with a k for some k with
1 ≤ k ≤ n. Since there are p?(n−k) compositions of n with first part k, 1 ≤ k < n,
and one with first part n, using induction hypothesis we get

p?(n) = 1 +
n−1X
k=1

p?(n− k) = (2n−2 + 2n−3 + · · ·+ 2 + 1) + 1 = 2n−1.

Recurrence. One of the simplest, yet powerful, methods to resolve a combinato-
rial problem is to find a recurrence equation satisfied by the function that solves
the problem, then use standard methods to solve the recurrence. Recurrences are
not easy to resolve in general, yet the sequence {p?(n)}n≥1 looks promising given
the sequence it represents.

The set of compositions of n with first part 1 is in one-to-one correspondence
with the set of compositions of n− 1 via (1, a2, a3, . . . , ak)↔ (a2, a3, . . . , ak). The
set of compositions of n with first part m > 1 is in one-to-one correspondence
with the set of compositions of n − 1 with first part m − 1 via (a1, a2, . . . , ak) ↔
(a1 − 1, a2, . . . , ak). The latter set is the set of all compositions of n − 1. Hence
p?(n) = 2 · p?(n− 1) for n ≥ 2, and since p?(1) = 21−1, we have p?(n) = 2n−1.

Generating Functions. Several counting problems are easily resolved by evalu-
ating or simplifying their generating function. This is particularly true of functions
that are linear combinations of geometric sequences.

Since p?k(n) counts the number of k-tuples (a1, . . . , ak) of positive integers
whose sum is n, it equals the coefficient of xn in the expansion (x+x2+x3+· · · )k =
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xk(1− x)−k. Hence the sequence {p?(n)}n≥1 has the generating function

∞X
n=1

p?(n)xn =
∞X
k=1

xk(1− x)−k =
x

1− 2x
= x

∞X
n=0

(2x)n.

Comparing coefficients of xn, we have p?(n) = 2n−1.

Sets. We know that if S has n elements, then the power set P(S) of S has 2n

elements. Therefore it must be the case that the power set of a set of size n − 1
must be in one-to-one correspondence with the set of compositions of n, given the
formula in (2). We exploit this fact to produce such a one-to-one correspondence
between the two sets.

Write P?(n) for the set of all ordered tuples (a1, . . . , ak) of positive integers
whose sum is n, P(S) for the power set of S, and [m] for {1, . . . ,m} where m ∈ N.

Define a mapping ϕ : P?(n)→ P
�
[n− 1]

�
by

(a1, . . . , ak) 7→ {a1, a1 + a2, . . . , a1 + a2 + · · ·+ ak−1},

with (n) 7→ ∅.

We show that ϕ is one-one and onto. Suppose a := (a1, . . . , ar) and b :=
(b1, . . . , bs) are unequal elements in P?(n). So ai = bi for 1 ≤ i < j, and aj < bj
for a suitable j. Then a1 + · · ·+ aj ∈ ϕ(a) \ ϕ(b) since

b1 + · · ·+ bj−1 = a1 + · · ·+ aj−1 < a1 + · · ·+ aj−1 + aj < b1 + · · ·+ bj−1 + bj ,

and the elements of ϕ(b) are arranged in increasing order. Hence ϕ is one-one.

Any non-empty subset {b1, . . . , bk} of [n−1], with b1 < · · · < bk, is the image
of (b1, b2−b1, b3−b2, . . . , bk−bk−1, n−bk) ∈ P?(n), as can be easily verified. Hence
ϕ is also onto.

Functions. It is customary for BA to denote the set of all functions with domain
A and codomain B, since

��BA�� = |B||A| for finite sets A, B. So if we denote
by 2 the set {0, 1}, by 2S we mean the set of all functions from S into 2, and
this set has size |2||S| = 2|S|. Borrowing the notations from Sets, we must now
exhibit a one-to-one correspondence between the sets P?(n) and 2[n−1]. Recall
the characteristic function of a set A is a function χA defined as

χA(a) =

§
1 if a ∈ A
0 if a 6∈ A .

Define a mapping ψ : P?(n)→ 2[n−1] by

(n) 7→ χ∅ = 0, (a1, . . . , ak) 7→ χA,

where A = {a1, a1 + a2, . . . , a1 + a2 + · · ·+ ak−1}.
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We show that ψ is one-one and onto. With the notations used for Sets, recall
that a1 + · · ·+ aj ∈ ϕ(a) \ ϕ(b). So if A = {a1, a1 + a2, . . . , a1 + a2 + · · ·+ ar−1}
and B = {b1, b1 + b2, . . . , b1 + b2 + · · ·+ bs−1}, then χA 6= χB . Hence ψ is one-one.

Suppose f ∈ 2[n−1], with f 6= 0. Let f−1(1) = {a1, . . . , ak}, where a1 <
. . . < ak. Then it is easy to verify that f is the image under ψ of (a1, a2− a1, a3−
a2, . . . , ak − ak−1, n− ak) ∈ P?(n). Hence ψ is also onto.

Inclusion & Exclusion. The Principle of Inclusion & Exclusion (PIE) is useful in
solving such diverse problems as counting the number of derangements, the number
of onto mappings between two finite sets, and number of integers relatively prime
to and less than a given integer. PIE counts the number of elements outside of
finitely many (finite) sets, giving the result in terms of intersections of these sets.
When only two sets are involved, PIE is just the formula

|A ∪B|+ |A ∩B| = |A|+ |B|,

for finite sets A, B. We include this connection as our last example, but this
connection also relies on induction.

We also induct on n. Observe that p?(1) = 1, and assume that p?(m) = 2m−1

for 1 ≤ m ≤ n. To each a = (a1, . . . , ak) ∈ P?(n), we associate two elements of
P?(n+ 1), given by

`(a) := (1, a1, . . . , ak), r(a) := (a1, . . . , ak, 1).

Define

L?(n) := `
�
P?(n)

�
= {`(a) : a ∈ P?(n)},

R?(n) := r
�
P?(n)

�
= {r(a) : a ∈ P?(n)};

Q?(n) := P?(n) \
¦
L?(n− 1) ∪R?(n− 1)

©
.

Therefore

|P?(n)| = |L?(n− 1) ∪R?(n− 1)|+ |Q?(n)| (3)

Clearly |L?(n)| = |P?(n)| = |R?(n)|, and these equal 2n−1 by induction
hypothesis. We claim that |L?(n− 1) ∩ R?(n− 1)| = 2n−2. Any a ∈ L?(n− 1) ∩
R?(n−1) must have first and last part 1. Removing these 1’s results in an element
in P?(n− 1). Conversely, to any element in P?(n− 1) we can attach a 1 at both
ends and obtain an element in L?(n−1)∩R?(n−1). Hence L?(n−1)∩R?(n−1)
is in one-to-one correspondence with P?(n − 1), and so by induction hypothesis
|L?(n) ∩R?(n)| = 2n−2. Therefore

|L?(n) ∪R?(n)| = |L?(n)|+ |R?(n)| − |L?(n) ∩R?(n)|
= 2n−1 + 2n−1 − 2n−2 = 3 · 2n−2 (4)
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Note that a = (a1, . . . , ak) ∈ Q?(n) ⊂ P?(n) if and only if a1 > 1 and
ak > 1. The correspondence (a1, . . . , ak)↔ (a1 − 1, a2, . . . , ak−1, ak − 1) sets up a
one-to-one correspondence between Q?(n) and P?(n− 2). Therefore

|Q?(n)| = 2n−3 (5)

From equations (3), (4), (5) we get

p?(n+ 1) = |P?(n+ 1)| = |L?(n)∪R?(n)|+ |Q?(n+ 1)| = (3 · 2n−2) + 2n−2 = 2n.
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